Source code for apache_beam.testing.synthetic_pipeline

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""A set of utilities to write pipelines for performance tests.

This module offers a way to create pipelines using synthetic sources and steps.
Exact shape of the pipeline and the behaviour of sources and steps can be
controlled through arguments. Please see function 'parse_args()' for more
details about the arguments.

Shape of the pipeline is primarily controlled through two arguments. Argument
'steps' can be used to define a list of steps as a JSON string. Argument
'barrier' describes how these steps are separated from each other. Argument
'barrier' can be use to build a pipeline as a series of steps or a tree of
steps with a fanin or a fanout of size 2.

Other arguments describe what gets generated by synthetic sources that produce
data for the pipeline.
"""

# pytype: skip-file

import argparse
import json
import logging
import math
import os
import sys
import time
from random import Random
from typing import Optional
from typing import Tuple

import apache_beam as beam
from apache_beam import pvalue
from apache_beam import typehints
from apache_beam.io import WriteToText
from apache_beam.io import iobase
from apache_beam.io import range_trackers
from apache_beam.io import restriction_trackers
from apache_beam.io.restriction_trackers import OffsetRange
from apache_beam.io.restriction_trackers import OffsetRestrictionTracker
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.testing.test_pipeline import TestPipeline
from apache_beam.transforms import userstate
from apache_beam.transforms.core import RestrictionProvider

try:
  import numpy as np
except ImportError:
  np = None

try:
  from .fast_test_utils import LCGenerator
except ImportError:
  # Cythonized lib not available
  from .test_utils import LCGenerator


class _Random(Random):
  """A subclass of `random.Random` from the Python Standard Library that
  provides a method returning random bytes of arbitrary length.
  """

  # `numpy.random.RandomState` does not provide `random()` method, we keep this
  # for compatibility reasons.
  random_sample = Random.random

  # TODO(yathu) just use builtin rand_bytes when drop py38 support
  def rand_bytes(self, length):
    """Returns random bytes.

    Args:
      length (int): Number of random bytes.
    """
    return self.getrandbits(length * 8).to_bytes(length, sys.byteorder)


[docs] def get_generator(seed: Optional[int] = None, algorithm: Optional[str] = None): if algorithm is None or algorithm == 'builtin': return _Random(seed) elif algorithm == 'lcg': generator = LCGenerator() if seed is not None: generator.seed(seed) return generator else: raise ValueError( 'Unknown algorithm %s. Supported algorithms are "builtin" or "lcg".', algorithm)
[docs] def parse_byte_size(s): suffixes = 'BKMGTP' if s[-1] in suffixes: return int(float(s[:-1]) * 1024**suffixes.index(s[-1])) return int(s)
[docs] def div_round_up(a, b): """Return ceil(a/b).""" return int(math.ceil(float(a) / b))
[docs] def rotate_key(element): """Returns a new key-value pair of the same size but with a different key.""" (key, value) = element return key[-1:] + key[:-1], value
[docs] def initial_splitting_zipf( start_position, stop_position, desired_num_bundles, distribution_parameter, num_total_records=None): """Split the given range (defined by start_position, stop_position) into desired_num_bundles using zipf with the given distribution_parameter. """ if not num_total_records: num_total_records = stop_position - start_position samples = np.random.zipf(distribution_parameter, desired_num_bundles) total = sum(samples) relative_bundle_sizes = [(float(sample) / total) for sample in samples] bundle_ranges = [] start = start_position index = 0 while start < stop_position: if index == desired_num_bundles - 1: bundle_ranges.append((start, stop_position)) break stop = start + int(num_total_records * relative_bundle_sizes[index]) bundle_ranges.append((start, stop)) start = stop index += 1 return bundle_ranges
[docs] class SyntheticStep(beam.DoFn): """A DoFn of which behavior can be controlled through prespecified parameters. """ def __init__( self, per_element_delay_sec=0, per_bundle_delay_sec=0, output_records_per_input_record=1, output_filter_ratio=0): if per_element_delay_sec and per_element_delay_sec < 1e-3: raise ValueError( 'Per element sleep time must be at least 1e-3. ' 'Received: %r', per_element_delay_sec) self._per_element_delay_sec = per_element_delay_sec self._per_bundle_delay_sec = per_bundle_delay_sec self._output_records_per_input_record = output_records_per_input_record self._output_filter_ratio = output_filter_ratio
[docs] def start_bundle(self): self._start_time = time.time()
[docs] def finish_bundle(self): # The target is for the enclosing stage to take as close to as possible # the given number of seconds, so we only sleep enough to make up for # overheads not incurred elsewhere. to_sleep = self._per_bundle_delay_sec - (time.time() - self._start_time) # Ignoring sub-millisecond sleep times. if to_sleep >= 1e-3: time.sleep(to_sleep)
[docs] def process(self, element): if self._per_element_delay_sec >= 1e-3: time.sleep(self._per_element_delay_sec) filter_element = False if self._output_filter_ratio > 0: if np.random.random() < self._output_filter_ratio: filter_element = True if not filter_element: for _ in range(self._output_records_per_input_record): yield element
[docs] class NonLiquidShardingOffsetRangeTracker(OffsetRestrictionTracker): """An OffsetRangeTracker that doesn't allow splitting. """
[docs] def try_split(self, split_offset): pass # Don't split.
[docs] def checkpoint(self): pass # Don't split.
[docs] class SyntheticSDFStepRestrictionProvider(RestrictionProvider): """A `RestrictionProvider` for SyntheticSDFStep. An initial_restriction and split that operate on num_records and ignores source description (element). Splits into initial_splitting_num_bundles. Returns size_estimate_override as restriction size, if set. Otherwise uses element size. If initial_splitting_uneven_chunks, produces uneven chunks. """ def __init__( self, num_records, initial_splitting_num_bundles, initial_splitting_uneven_chunks, disable_liquid_sharding, size_estimate_override): self._num_records = num_records self._initial_splitting_num_bundles = initial_splitting_num_bundles self._initial_splitting_uneven_chunks = initial_splitting_uneven_chunks self._disable_liquid_sharding = disable_liquid_sharding self._size_estimate_override = size_estimate_override
[docs] def initial_restriction(self, element): return OffsetRange(0, self._num_records)
[docs] def create_tracker(self, restriction): if self._disable_liquid_sharding: return NonLiquidShardingOffsetRangeTracker(restriction) else: return OffsetRestrictionTracker(restriction)
[docs] def split(self, element, restriction): elems = restriction.size() if (self._initial_splitting_uneven_chunks and self._initial_splitting_num_bundles > 1 and elems > 1): bundle_ranges = initial_splitting_zipf( restriction.start, restriction.stop, self._initial_splitting_num_bundles, 3.0) for start, stop in bundle_ranges: yield OffsetRange(start, stop) else: offsets_per_split = max(1, (elems // self._initial_splitting_num_bundles)) for split in restriction.split(offsets_per_split, offsets_per_split // 2): yield split
[docs] def restriction_size(self, element, restriction): if self._size_estimate_override is not None: return self._size_estimate_override element_size = len(element) if isinstance(element, str) else 1 return restriction.size() * element_size
[docs] def get_synthetic_sdf_step( per_element_delay_sec=0, per_bundle_delay_sec=0, output_records_per_input_record=1, output_filter_ratio=0, initial_splitting_num_bundles=8, initial_splitting_uneven_chunks=False, disable_liquid_sharding=False, size_estimate_override=None, ): """A function which returns a SyntheticSDFStep with given parameters. """ class SyntheticSDFStep(beam.DoFn): """A SplittableDoFn of which behavior can be controlled through prespecified parameters. """ def __init__( self, per_element_delay_sec_arg, per_bundle_delay_sec_arg, output_filter_ratio_arg, output_records_per_input_record_arg): if per_element_delay_sec_arg: per_element_delay_sec_arg = ( per_element_delay_sec_arg // output_records_per_input_record_arg) if per_element_delay_sec_arg < 1e-3: raise ValueError( 'Per element sleep time must be at least 1e-3 after being ' 'divided among output elements.') self._per_element_delay_sec = per_element_delay_sec_arg self._per_bundle_delay_sec = per_bundle_delay_sec_arg self._output_filter_ratio = output_filter_ratio_arg def start_bundle(self): self._start_time = time.time() def finish_bundle(self): # The target is for the enclosing stage to take as close to as possible # the given number of seconds, so we only sleep enough to make up for # overheads not incurred elsewhere. to_sleep = self._per_bundle_delay_sec - (time.time() - self._start_time) # Ignoring sub-millisecond sleep times. if to_sleep >= 1e-3: time.sleep(to_sleep) def process( self, element, restriction_tracker=beam.DoFn.RestrictionParam( SyntheticSDFStepRestrictionProvider( output_records_per_input_record, initial_splitting_num_bundles, initial_splitting_uneven_chunks, disable_liquid_sharding, size_estimate_override))): filter_element = False if self._output_filter_ratio > 0: if np.random.random() < self._output_filter_ratio: filter_element = True current_restriction = restriction_tracker.current_restriction() for cur in range(current_restriction.start, current_restriction.stop): if not restriction_tracker.try_claim(cur): return if self._per_element_delay_sec: time.sleep(self._per_element_delay_sec) if not filter_element: yield element cur += 1 return SyntheticSDFStep( per_element_delay_sec, per_bundle_delay_sec, output_filter_ratio, output_records_per_input_record)
[docs] class SyntheticSource(iobase.BoundedSource): """A custom source of a specified size. """ def __init__(self, input_spec): """Initiates a synthetic source. Args: input_spec: Input specification of the source. See corresponding option in function 'parse_args()' below for more details. Raises: ValueError: if input parameters are invalid. """ def maybe_parse_byte_size(s): return parse_byte_size(s) if isinstance(s, str) else int(s) self._num_records = input_spec['numRecords'] self._key_size = maybe_parse_byte_size(input_spec.get('keySizeBytes', 1)) self._hot_key_fraction = input_spec.get('hotKeyFraction', 0) self._num_hot_keys = input_spec.get('numHotKeys', 0) self._value_size = maybe_parse_byte_size( input_spec.get('valueSizeBytes', 1)) self._total_size = self.element_size * self._num_records self._initial_splitting = ( input_spec['bundleSizeDistribution']['type'] if 'bundleSizeDistribution' in input_spec else 'const') if self._initial_splitting != 'const' and self._initial_splitting != 'zipf': raise ValueError( 'Only const and zipf distributions are supported for determining ' 'sizes of bundles produced by initial splitting. Received: %s', self._initial_splitting) self._initial_splitting_num_bundles = ( input_spec['forceNumInitialBundles'] if 'forceNumInitialBundles' in input_spec else 0) if self._initial_splitting == 'zipf': self._initial_splitting_distribution_parameter = ( input_spec['bundleSizeDistribution']['param']) if self._initial_splitting_distribution_parameter < 1: raise ValueError( 'Parameter for a Zipf distribution must be larger than 1. ' 'Received %r.', self._initial_splitting_distribution_parameter) else: self._initial_splitting_distribution_parameter = 0 self._dynamic_splitting = ( 'none' if ( 'splitPointFrequencyRecords' in input_spec and input_spec['splitPointFrequencyRecords'] == 0) else 'perfect') if 'delayDistribution' in input_spec: if input_spec['delayDistribution']['type'] != 'const': raise ValueError( 'SyntheticSource currently only supports delay ' 'distributions of type \'const\'. Received %s.', input_spec['delayDistribution']['type']) self._sleep_per_input_record_sec = ( float(input_spec['delayDistribution']['const']) / 1000) if (self._sleep_per_input_record_sec and self._sleep_per_input_record_sec < 1e-3): raise ValueError( 'Sleep time per input record must be at least 1e-3.' ' Received: %r', self._sleep_per_input_record_sec) else: self._sleep_per_input_record_sec = 0 # algorithm of the generator self.gen_algo = input_spec.get('algorithm', None) if self.gen_algo not in (None, 'builtin', 'lcg'): raise ValueError( 'Unknown algorithm for input_spec: %s. Supported ' 'algorithms are "builtin" and "lcg".', self.gen_algo) @property def element_size(self): return self._key_size + self._value_size
[docs] def estimate_size(self): return self._total_size
[docs] def split(self, desired_bundle_size, start_position=0, stop_position=None): # Performs initial splitting of SyntheticSource. # # Exact sizes and distribution of initial splits generated here depends on # the input specification of the SyntheticSource. if stop_position is None: stop_position = self._num_records if self._initial_splitting == 'zipf': desired_num_bundles = self._initial_splitting_num_bundles or math.ceil( float(self.estimate_size()) / desired_bundle_size) bundle_ranges = initial_splitting_zipf( start_position, stop_position, desired_num_bundles, self._initial_splitting_distribution_parameter, self._num_records) else: if self._initial_splitting_num_bundles: bundle_size_in_elements = max( 1, int(self._num_records / self._initial_splitting_num_bundles)) else: bundle_size_in_elements = ( max( div_round_up(desired_bundle_size, self.element_size), int(math.floor(math.sqrt(self._num_records))))) bundle_ranges = [] for start in range(start_position, stop_position, bundle_size_in_elements): stop = min(start + bundle_size_in_elements, stop_position) bundle_ranges.append((start, stop)) for start, stop in bundle_ranges: yield iobase.SourceBundle(stop - start, self, start, stop)
[docs] def get_range_tracker(self, start_position, stop_position): if start_position is None: start_position = 0 if stop_position is None: stop_position = self._num_records tracker = range_trackers.OffsetRangeTracker(start_position, stop_position) if self._dynamic_splitting == 'none': tracker = range_trackers.UnsplittableRangeTracker(tracker) return tracker
def _gen_kv_pair(self, generator, index): generator.seed(index) rand = generator.random_sample() # Determines whether to generate hot key or not. if rand < self._hot_key_fraction: # Generate hot key. # An integer is randomly selected from the range [0, numHotKeys-1] # with equal probability. generator_hot = get_generator( seed=index % self._num_hot_keys, algorithm=self.gen_algo) bytes_ = generator_hot.rand_bytes(self._key_size), generator.rand_bytes( self._value_size) else: bytes_ = generator.rand_bytes(self.element_size) bytes_ = bytes_[:self._key_size], bytes_[self._key_size:] return bytes_
[docs] def read(self, range_tracker): index = range_tracker.start_position() generator = get_generator(algorithm=self.gen_algo) while range_tracker.try_claim(index): time.sleep(self._sleep_per_input_record_sec) yield self._gen_kv_pair(generator, index) index += 1
[docs] def default_output_coder(self): return beam.coders.TupleCoder( [beam.coders.BytesCoder(), beam.coders.BytesCoder()])
[docs] class SyntheticSDFSourceRestrictionProvider(RestrictionProvider): """A `RestrictionProvider` for SyntheticSDFAsSource. In initial_restriction(element) and split(element), element means source description. A typical element is like: { 'key_size': 1, 'value_size': 1, 'initial_splitting_num_bundles': 8, 'initial_splitting_desired_bundle_size': 2, 'sleep_per_input_record_sec': 0, 'initial_splitting' : 'const' } """
[docs] def initial_restriction(self, element): return OffsetRange(0, element['num_records'])
[docs] def create_tracker(self, restriction): return restriction_trackers.OffsetRestrictionTracker(restriction)
[docs] def split(self, element, restriction): bundle_ranges = [] start_position = restriction.start stop_position = restriction.stop element_size = element['key_size'] + element['value_size'] estimate_size = element_size * element['num_records'] if element['initial_splitting'] == 'zipf': desired_num_bundles = ( element['initial_splitting_num_bundles'] or div_round_up( estimate_size, element['initial_splitting_desired_bundle_size'])) samples = np.random.zipf( element['initial_splitting_distribution_parameter'], desired_num_bundles) total = sum(samples) relative_bundle_sizes = [(float(sample) / total) for sample in samples] start = start_position index = 0 while start < stop_position: if index == desired_num_bundles - 1: bundle_ranges.append(OffsetRange(start, stop_position)) break stop = start + int( element['num_records'] * relative_bundle_sizes[index]) bundle_ranges.append(OffsetRange(start, stop)) start = stop index += 1 else: if element['initial_splitting_num_bundles']: bundle_size_in_elements = max( 1, int( element['num_records'] / element['initial_splitting_num_bundles'])) else: bundle_size_in_elements = ( max( div_round_up( element['initial_splitting_desired_bundle_size'], element_size), int(math.floor(math.sqrt(element['num_records']))))) for start in range(start_position, stop_position, bundle_size_in_elements): stop = min(start + bundle_size_in_elements, stop_position) bundle_ranges.append(OffsetRange(start, stop)) return bundle_ranges
[docs] def restriction_size(self, element, restriction): return (element['key_size'] + element['value_size']) * restriction.size()
[docs] class SyntheticSDFAsSource(beam.DoFn): """A SDF that generates records like a source. This SDF accepts a PCollection of record-based source description. A typical description is like: { 'key_size': 1, 'value_size': 1, 'initial_splitting_num_bundles': 8, 'initial_splitting_desired_bundle_size': 2, 'sleep_per_input_record_sec': 0, 'initial_splitting' : 'const' } A simple pipeline taking this SDF as a source is like: p | beam.Create([description1, description2,...]) | beam.ParDo(SyntheticSDFAsSource()) NOTE: The SDF.process() will have different param content between defining a DoFn and runtime. When defining an SDF.process, the restriction_tracker should be a `RestrictionProvider`. During runtime, the DoFnRunner.process_with_sized_restriction() will feed a 'RestrictionTracker' based on a restriction to SDF.process(). """
[docs] def process( self, element, restriction_tracker=beam.DoFn.RestrictionParam( SyntheticSDFSourceRestrictionProvider())): cur = restriction_tracker.current_restriction().start while restriction_tracker.try_claim(cur): r = get_generator(algorithm=element.get('algorithm', None), seed=cur) time.sleep(element['sleep_per_input_record_sec']) yield ( r.rand_bytes(element['key_size']), r.rand_bytes(element['value_size'])) cur += 1
[docs] class ShuffleBarrier(beam.PTransform):
[docs] def expand(self, pc): return ( pc | beam.Map(rotate_key) | beam.GroupByKey() | 'Ungroup' >> beam.FlatMap(lambda elm: [(elm[0], v) for v in elm[1]]))
[docs] class SideInputBarrier(beam.PTransform):
[docs] def expand(self, pc): return ( pc | beam.Map(rotate_key) | beam.Map( lambda elem, ignored: elem, beam.pvalue.AsIter(pc | beam.FlatMap(lambda elem: None))))
[docs] def merge_using_gbk(name, pc1, pc2): """Merges two given PCollections using a CoGroupByKey.""" pc1_with_key = pc1 | (name + 'AttachKey1') >> beam.Map(lambda x: (x, x)) pc2_with_key = pc2 | (name + 'AttachKey2') >> beam.Map(lambda x: (x, x)) grouped = ({ 'pc1': pc1_with_key, 'pc2': pc2_with_key } | (name + 'Group') >> beam.CoGroupByKey()) return ( grouped | (name + 'DeDup') >> beam.Map(lambda elm: elm[0]) ) # Ignoring values
[docs] def merge_using_side_input(name, pc1, pc2): """Merges two given PCollections using side inputs.""" def join_fn(val, _): # Ignoring side input return val return pc1 | name >> beam.core.Map(join_fn, beam.pvalue.AsIter(pc2))
[docs] def expand_using_gbk(name, pc): """Expands a given PCollection into two copies using GroupByKey.""" ret = [] ret.append((pc | ('%s.a' % name) >> ShuffleBarrier())) ret.append((pc | ('%s.b' % name) >> ShuffleBarrier())) return ret
[docs] def expand_using_second_output(name, pc): """Expands a given PCollection into two copies using side outputs.""" class ExpandFn(beam.DoFn): def process(self, element): yield beam.pvalue.TaggedOutput('second_out', element) yield element pc1, pc2 = (pc | name >> beam.ParDo( ExpandFn()).with_outputs('second_out', main='main_out')) return [pc1, pc2]
def _parse_steps(json_str): """Converts the JSON step description into Python objects. See property 'steps' for more details about the JSON step description. Args: json_str: a JSON string that describes the steps. Returns: Information about steps as a list of dictionaries. Each dictionary may have following properties. (1) per_element_delay - amount of delay for each element in seconds. (2) per_bundle_delay - minimum amount of delay for a given step in seconds. (3) output_records_per_input_record - number of output elements generated for each input element to a step. (4) output_filter_ratio - the probability at which a step may filter out a given element by not producing any output for that element. (5) splittable - if the step should be splittable. (6) initial_splitting_num_bundles - number of bundles initial split if step is splittable. (7) initial_splitting_uneven_chunks - if the bundles should be unevenly-sized (8) disable_liquid_sharding - if liquid sharding should be disabled (9) size_estimate_override - the size estimate or None to use default """ all_steps = [] json_data = json.loads(json_str) for val in json_data: steps = {} steps['per_element_delay'] = ((float(val['per_element_delay_msec']) / 1000) if 'per_element_delay_msec' in val else 0) steps['per_bundle_delay'] = ( float(val['per_bundle_delay_sec']) if 'per_bundle_delay_sec' in val else 0) steps['output_records_per_input_record'] = ( int(val['output_records_per_input_record']) if 'output_records_per_input_record' in val else 1) steps['output_filter_ratio'] = ( float(val['output_filter_ratio']) if 'output_filter_ratio' in val else 0) steps['splittable'] = ( bool(val['splittable']) if 'splittable' in val else False) steps['initial_splitting_num_bundles'] = ( int(val['initial_splitting_num_bundles']) if 'initial_splitting_num_bundles' in val else 8) steps['initial_splitting_uneven_chunks'] = ( bool(val['initial_splitting_uneven_chunks']) if 'initial_splitting_uneven_chunks' in val else False) steps['disable_liquid_sharding'] = ( bool(val['disable_liquid_sharding']) if 'disable_liquid_sharding' in val else False) steps['size_estimate_override'] = ( int(val['size_estimate_override']) if 'size_estimate_override' in val else None) all_steps.append(steps) return all_steps
[docs] def parse_args(args): """Parses a given set of arguments. Args: args: set of arguments to be passed. Returns: a tuple where first item gives the set of arguments defined and parsed within this method and second item gives the set of unknown arguments. """ parser = argparse.ArgumentParser() parser.add_argument( '--steps', dest='steps', type=_parse_steps, help='A JSON string that gives a list where each entry of the list is ' 'configuration information for a step. Configuration for each step ' 'consists of ' '(1) A float "per_bundle_delay_sec" (in seconds). Defaults to 0.' '(2) A float "per_element_delay_msec" (in milli seconds). ' ' Defaults to 0.' '(3) An integer "output_records_per_input_record". Defaults to 1.' '(4) A float "output_filter_ratio" in the range [0, 1] . ' ' Defaults to 0.' '(5) A bool "splittable" that defaults to false.' '(6) An integer "initial_splitting_num_bundles". Defaults to 8.') parser.add_argument( '--input', dest='input', type=json.loads, help='A JSON string that describes the properties of the SyntheticSource ' 'used by the pipeline. Configuration is similar to Java ' 'SyntheticBoundedInput.' 'Currently supports following properties. ' '(1) An integer "numRecords". ' '(2) An integer "keySize". ' '(3) An integer "valueSize". ' '(4) A tuple "bundleSizeDistribution" with following values. ' ' A string "type". Allowed values are "const" and "zipf". ' ' An float "param". Only used if "type"=="zipf". Must be ' ' larger than 1. ' '(5) An integer "forceNumInitialBundles". ' '(6) An integer "splitPointFrequencyRecords". ' '(7) A tuple "delayDistribution" with following values. ' ' A string "type". Only allowed value is "const". ' ' An integer "const". ' '(8) A string "algorithm". Allowed values are "builtin" for Python ' ' builtin random generator, and "lcg" for the linear congruential ' ' generator equivalent to Java (java.util.Random).') parser.add_argument( '--barrier', dest='barrier', default='shuffle', choices=[ 'shuffle', 'side-input', 'expand-gbk', 'expand-second-output', 'merge-gbk', 'merge-side-input' ], help='Whether to use shuffle as the barrier ' '(as opposed to side inputs).') parser.add_argument( '--output', dest='output', default='', help='Destination to write output.') return parser.parse_known_args(args)
[docs] def run(argv=None, save_main_session=True): """Runs the workflow.""" known_args, pipeline_args = parse_args(argv) pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = save_main_session input_info = known_args.input with TestPipeline(options=pipeline_options) as p: source = SyntheticSource(input_info) # pylint: disable=expression-not-assigned barrier = known_args.barrier pc_list = [] num_roots = 2**(len(known_args.steps) - 1) if ( barrier == 'merge-gbk' or barrier == 'merge-side-input') else 1 for read_no in range(num_roots): pc_list.append((p | ('Read %d' % read_no) >> beam.io.Read(source))) for step_no, steps in enumerate(known_args.steps): if step_no != 0: new_pc_list = [] for pc_no, pc in enumerate(pc_list): if barrier == 'shuffle': new_pc_list.append( (pc | ('shuffle %d.%d' % (step_no, pc_no)) >> ShuffleBarrier())) elif barrier == 'side-input': new_pc_list.append(( pc | ('side-input %d.%d' % (step_no, pc_no)) >> SideInputBarrier())) elif barrier == 'expand-gbk': new_pc_list.extend( expand_using_gbk(('expand-gbk %d.%d' % (step_no, pc_no)), pc)) elif barrier == 'expand-second-output': new_pc_list.extend( expand_using_second_output( ('expand-second-output %d.%d' % (step_no, pc_no)), pc)) elif barrier == 'merge-gbk': if pc_no % 2 == 0: new_pc_list.append( merge_using_gbk(('merge-gbk %d.%d' % (step_no, pc_no)), pc, pc_list[pc_no + 1])) else: continue elif barrier == 'merge-side-input': if pc_no % 2 == 0: new_pc_list.append( merge_using_side_input( ('merge-side-input %d.%d' % (step_no, pc_no)), pc, pc_list[pc_no + 1])) else: continue pc_list = new_pc_list new_pc_list = [] for pc_no, pc in enumerate(pc_list): if steps['splittable']: step = get_synthetic_sdf_step( per_element_delay_sec=steps['per_element_delay'], per_bundle_delay_sec=steps['per_bundle_delay'], output_records_per_input_record=steps[ 'output_records_per_input_record'], output_filter_ratio=steps['output_filter_ratio'], initial_splitting_num_bundles=steps[ 'initial_splitting_num_bundles'], initial_splitting_uneven_chunks=steps[ 'initial_splitting_uneven_chunks'], disable_liquid_sharding=steps['disable_liquid_sharding'], size_estimate_override=steps['size_estimate_override']) else: step = SyntheticStep( per_element_delay_sec=steps['per_element_delay'], per_bundle_delay_sec=steps['per_bundle_delay'], output_records_per_input_record=steps[ 'output_records_per_input_record'], output_filter_ratio=steps['output_filter_ratio']) new_pc = pc | 'SyntheticStep %d.%d' % (step_no, pc_no) >> beam.ParDo(step) new_pc_list.append(new_pc) pc_list = new_pc_list if known_args.output: # If an output location is provided we format and write output. if len(pc_list) == 1: ( pc_list[0] | 'FormatOutput' >> beam.Map(lambda elm: (elm[0] + elm[1])) | 'WriteOutput' >> WriteToText(known_args.output)) logging.info('Pipeline run completed.')
if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()
[docs] class StatefulLoadGenerator(beam.PTransform): """A PTransform for generating random data using Timers API.""" def __init__(self, input_options, num_keys=100): self.num_records = input_options['num_records'] self.key_size = input_options['key_size'] self.value_size = input_options['value_size'] self.num_keys = num_keys
[docs] @typehints.with_output_types(Tuple[bytes, bytes]) class GenerateKeys(beam.DoFn): def __init__(self, num_keys, key_size): self.num_keys = num_keys self.key_size = key_size
[docs] def process(self, impulse): for _ in range(self.num_keys): key = os.urandom(self.key_size) yield key, b''
[docs] class GenerateLoad(beam.DoFn): state_spec = userstate.CombiningValueStateSpec( 'bundles_remaining', combine_fn=sum) timer_spec = userstate.TimerSpec('timer', userstate.TimeDomain.WATERMARK) def __init__(self, num_records_per_key, value_size, bundle_size=1000): self.num_records_per_key = num_records_per_key self.payload = os.urandom(value_size) self.bundle_size = bundle_size self.time_fn = time.time
[docs] def process( self, _element, records_remaining=beam.DoFn.StateParam(state_spec), timer=beam.DoFn.TimerParam(timer_spec)): records_remaining.add(self.num_records_per_key) timer.set(0)
[docs] @userstate.on_timer(timer_spec) def process_timer( self, key=beam.DoFn.KeyParam, records_remaining=beam.DoFn.StateParam(state_spec), timer=beam.DoFn.TimerParam(timer_spec)): cur_bundle_size = min(self.bundle_size, records_remaining.read()) for _ in range(cur_bundle_size): records_remaining.add(-1) yield key, self.payload if records_remaining.read() > 0: timer.set(0)
[docs] def expand(self, pbegin): assert isinstance(pbegin, pvalue.PBegin), ( 'Input to transform must be a PBegin but found %s' % pbegin) return ( pbegin | 'Impulse' >> beam.Impulse() | 'GenerateKeys' >> beam.ParDo( StatefulLoadGenerator.GenerateKeys(self.num_keys, self.key_size)) | 'GenerateLoad' >> beam.ParDo( StatefulLoadGenerator.GenerateLoad( self.num_records // self.num_keys, self.value_size)))