Source code for apache_beam.runners.dataflow.dataflow_job_service

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import logging
import sys

from apache_beam.portability.api import beam_job_api_pb2
from apache_beam.runners.dataflow import dataflow_runner
from apache_beam.runners.portability import local_job_service
from apache_beam.runners.portability import local_job_service_main
from apache_beam.runners.portability import portable_runner


[docs] class DataflowBeamJob(local_job_service.BeamJob): """A representation of a single Beam job to be run on the Dataflow runner. """ def _invoke_runner(self): """Actually calls Dataflow and waits for completion. """ runner = dataflow_runner.DataflowRunner() self.result = runner.run_pipeline( None, self.pipeline_options(), self._pipeline_proto) # The result can be None if there is no need to send a request # to the service (e.g. template creation). if not getattr(self.result, 'has_job', None): self.set_state(beam_job_api_pb2.JobState.DONE) return self.result # Prefer this to result.wait_until_finish() to get state updates # and avoid creating an extra thread (which also messes with logging). dataflow_runner.DataflowRunner.poll_for_job_completion( runner, self.result, None, lambda dataflow_state: self.set_state( portable_runner.PipelineResult.pipeline_state_to_runner_api_state( self.result.api_jobstate_to_pipeline_state(dataflow_state)))) return self.result
[docs] def cancel(self): if not self.is_terminal_state(self.state): self.result.cancel()
[docs] def run(argv, beam_job_type=DataflowBeamJob): if argv[0] == __file__: argv = argv[1:] parser = argparse.ArgumentParser() parser.add_argument( '-p', '--port', '--job_port', type=int, default=0, help='port on which to serve the job api') parser.add_argument('--staging_dir') options = parser.parse_args(argv) job_servicer = local_job_service.LocalJobServicer( options.staging_dir, beam_job_type=beam_job_type) port = job_servicer.start_grpc_server(options.port) try: local_job_service_main.serve("Listening for beam jobs on port %d." % port) finally: job_servicer.stop()
if __name__ == '__main__': logging.basicConfig() logging.getLogger().setLevel(logging.INFO) run(sys.argv)