# pylint: skip-file
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
A connector for sending API requests to the GCP Vision API.
"""
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
from cachetools.func import ttl_cache
from apache_beam import typehints
from apache_beam.metrics import Metrics
from apache_beam.transforms import DoFn
from apache_beam.transforms import FlatMap
from apache_beam.transforms import ParDo
from apache_beam.transforms import PTransform
from apache_beam.transforms import util
try:
from google.cloud import vision
except ImportError:
raise ImportError(
'Google Cloud Vision not supported for this execution environment '
'(could not import google.cloud.vision).')
__all__ = [
'AnnotateImage',
'AnnotateImageWithContext',
]
@ttl_cache(maxsize=128, ttl=3600)
def get_vision_client(client_options=None):
"""Returns a Cloud Vision API client."""
_client = vision.ImageAnnotatorClient(client_options=client_options)
return _client
[docs]
class AnnotateImage(PTransform):
"""A ``PTransform`` for annotating images using the GCP Vision API.
ref: https://cloud.google.com/vision/docs/
Batches elements together using ``util.BatchElements`` PTransform and sends
each batch of elements to the GCP Vision API.
Element is a Union[str, bytes] of either an URI (e.g. a GCS URI)
or bytes base64-encoded image data.
Accepts an `AsDict` side input that maps each image to an image context.
"""
MAX_BATCH_SIZE = 5
MIN_BATCH_SIZE = 1
def __init__(
self,
features,
retry=None,
timeout=120,
max_batch_size=None,
min_batch_size=None,
client_options=None,
context_side_input=None,
metadata=None):
"""
Args:
features: (List[``vision.Feature``]) Required.
The Vision API features to detect
retry: (google.api_core.retry.Retry) Optional.
A retry object used to retry requests.
If None is specified (default), requests will not be retried.
timeout: (float) Optional.
The time in seconds to wait for the response from the Vision API.
Default is 120.
max_batch_size: (int) Optional.
Maximum number of images to batch in the same request to the Vision API.
Default is 5 (which is also the Vision API max).
This parameter is primarily intended for testing.
min_batch_size: (int) Optional.
Minimum number of images to batch in the same request to the Vision API.
Default is None. This parameter is primarily intended for testing.
client_options:
(Union[dict, google.api_core.client_options.ClientOptions]) Optional.
Client options used to set user options on the client.
API Endpoint should be set through client_options.
context_side_input: (beam.pvalue.AsDict) Optional.
An ``AsDict`` of a PCollection to be passed to the
_ImageAnnotateFn as the image context mapping containing additional
image context and/or feature-specific parameters.
Example usage::
image_contexts =
[(''gs://cloud-samples-data/vision/ocr/sign.jpg'', Union[dict,
``vision.ImageContext()``]),
(''gs://cloud-samples-data/vision/ocr/sign.jpg'', Union[dict,
``vision.ImageContext()``]),]
context_side_input =
(
p
| "Image contexts" >> beam.Create(image_contexts)
)
visionml.AnnotateImage(features,
context_side_input=beam.pvalue.AsDict(context_side_input)))
metadata: (Optional[Sequence[Tuple[str, str]]]): Optional.
Additional metadata that is provided to the method.
"""
super().__init__()
self.features = features
self.retry = retry
self.timeout = timeout
self.max_batch_size = max_batch_size or AnnotateImage.MAX_BATCH_SIZE
if self.max_batch_size > AnnotateImage.MAX_BATCH_SIZE:
raise ValueError(
'Max batch_size exceeded. '
'Batch size needs to be smaller than {}'.format(
AnnotateImage.MAX_BATCH_SIZE))
self.min_batch_size = min_batch_size or AnnotateImage.MIN_BATCH_SIZE
self.client_options = client_options
self.context_side_input = context_side_input
self.metadata = metadata
[docs]
def expand(self, pvalue):
return (
pvalue
| FlatMap(self._create_image_annotation_pairs, self.context_side_input)
| util.BatchElements(
min_batch_size=self.min_batch_size,
max_batch_size=self.max_batch_size)
| ParDo(
_ImageAnnotateFn(
features=self.features,
retry=self.retry,
timeout=self.timeout,
client_options=self.client_options,
metadata=self.metadata)))
@typehints.with_input_types(Union[str, bytes], Optional[vision.ImageContext])
@typehints.with_output_types(List[vision.AnnotateImageRequest])
def _create_image_annotation_pairs(self, element, context_side_input):
if context_side_input: # If we have a side input image context, use that
image_context = context_side_input.get(element)
else:
image_context = None
if isinstance(element, str):
image = vision.Image(
{'source': vision.ImageSource({'image_uri': element})})
else: # Typehint checks only allows str or bytes
image = vision.Image(content=element)
request = vision.AnnotateImageRequest({
'image': image,
'features': self.features,
'image_context': image_context
})
yield request
[docs]
class AnnotateImageWithContext(AnnotateImage):
"""A ``PTransform`` for annotating images using the GCP Vision API.
ref: https://cloud.google.com/vision/docs/
Batches elements together using ``util.BatchElements`` PTransform and sends
each batch of elements to the GCP Vision API.
Element is a tuple of::
(Union[str, bytes],
Optional[``vision.ImageContext``])
where the former is either an URI (e.g. a GCS URI) or bytes
base64-encoded image data.
"""
def __init__(
self,
features,
retry=None,
timeout=120,
max_batch_size=None,
min_batch_size=None,
client_options=None,
metadata=None):
"""
Args:
features: (List[``vision.Feature``]) Required.
The Vision API features to detect
retry: (google.api_core.retry.Retry) Optional.
A retry object used to retry requests.
If None is specified (default), requests will not be retried.
timeout: (float) Optional.
The time in seconds to wait for the response from the Vision API.
Default is 120.
max_batch_size: (int) Optional.
Maximum number of images to batch in the same request to the Vision API.
Default is 5 (which is also the Vision API max).
This parameter is primarily intended for testing.
min_batch_size: (int) Optional.
Minimum number of images to batch in the same request to the Vision API.
Default is None. This parameter is primarily intended for testing.
client_options:
(Union[dict, google.api_core.client_options.ClientOptions]) Optional.
Client options used to set user options on the client.
API Endpoint should be set through client_options.
metadata: (Optional[Sequence[Tuple[str, str]]]): Optional.
Additional metadata that is provided to the method.
"""
super().__init__(
features=features,
retry=retry,
timeout=timeout,
max_batch_size=max_batch_size,
min_batch_size=min_batch_size,
client_options=client_options,
metadata=metadata)
[docs]
def expand(self, pvalue):
return (
pvalue
| FlatMap(self._create_image_annotation_pairs)
| util.BatchElements(
min_batch_size=self.min_batch_size,
max_batch_size=self.max_batch_size)
| ParDo(
_ImageAnnotateFn(
features=self.features,
retry=self.retry,
timeout=self.timeout,
client_options=self.client_options,
metadata=self.metadata)))
@typehints.with_input_types(
Tuple[Union[str, bytes], Optional[vision.ImageContext]])
@typehints.with_output_types(List[vision.AnnotateImageRequest])
def _create_image_annotation_pairs(self, element, **kwargs):
element, image_context = element # Unpack (image, image_context) tuple
if isinstance(element, str):
image = vision.Image(
{'source': vision.ImageSource({'image_uri': element})})
else: # Typehint checks only allows str or bytes
image = vision.Image({"content": element})
request = vision.AnnotateImageRequest({
'image': image,
'features': self.features,
'image_context': image_context
})
yield request
@typehints.with_input_types(List[vision.AnnotateImageRequest])
class _ImageAnnotateFn(DoFn):
"""A DoFn that sends each input element to the GCP Vision API.
Returns ``google.cloud.vision.BatchAnnotateImagesResponse``.
"""
def __init__(self, features, retry, timeout, client_options, metadata):
super().__init__()
self._client = None
self.features = features
self.retry = retry
self.timeout = timeout
self.client_options = client_options
self.metadata = metadata
self.counter = Metrics.counter(self.__class__, "API Calls")
def setup(self):
self._client = get_vision_client(self.client_options)
def process(self, element, *args, **kwargs):
response = self._client.batch_annotate_images(
requests=element,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata)
self.counter.inc()
yield response