Using PyTransform from YAML
Beam YAML provides the ability to easily invoke Python transforms via the
PyTransform
type, simply referencing them by fully qualified name.
For example,
- type: PyTransform
config:
constructor: apache_beam.pkg.module.SomeTransform
args: [1, 'foo']
kwargs:
baz: 3
will invoke the transform apache_beam.pkg.mod.SomeTransform(1, 'foo', baz=3)
.
This fully qualified name can be any PTransform class or other callable that
returns a PTransform. Note, however, that PTransforms that do not accept or
return schema’d data may not be as useable to use from YAML.
Restoring the schema-ness after a non-schema returning transform can be done
by using the callable
option on MapToFields
which takes the entire element
as an input, e.g.
- type: PyTransform
config:
constructor: apache_beam.pkg.module.SomeTransform
args: [1, 'foo']
kwargs:
baz: 3
- type: MapToFields
config:
language: python
fields:
col1:
callable: 'lambda element: element.col1'
output_type: string
col2:
callable: 'lambda element: element.col2'
output_type: integer
This can be used to call arbitrary transforms in the Beam SDK, e.g.
pipeline:
transforms:
- type: PyTransform
name: ReadFromTsv
input: {}
config:
constructor: apache_beam.io.ReadFromCsv
kwargs:
path: '/path/to/*.tsv'
sep: '\t'
skip_blank_lines: True
true_values: ['yes']
false_values: ['no']
comment: '#'
on_bad_lines: 'skip'
binary: False
splittable: False
Defining a transform inline using __constructor__
If the desired transform does not exist, one can define it inline as well.
This is done with the special __constructor__
keywords,
similar to how cross-language transforms are done.
With the __constuctor__
keyword, one defines a Python callable that, on
invocation, returns the desired transform. The first argument (or source
keyword argument, if there are no positional arguments)
is interpreted as the Python code. For example
- type: PyTransform
config:
constructor: __constructor__
kwargs:
source: |
def create_my_transform(inc):
return beam.Map(lambda x: beam.Row(a=x.col2 + inc))
inc: 10
will apply beam.Map(lambda x: beam.Row(a=x.col2 + 10))
to the incoming
PCollection.
As a class object can be invoked as its own constructor, this allows one to
define a beam.PTransform
inline, e.g.
- type: PyTransform
config:
constructor: __constructor__
kwargs:
source: |
class MyPTransform(beam.PTransform):
def __init__(self, inc):
self._inc = inc
def expand(self, pcoll):
return pcoll | beam.Map(lambda x: beam.Row(a=x.col2 + self._inc))
inc: 10
which works exactly as one would expect.
Defining a transform inline using __callable__
The __callable__
keyword works similarly, but instead of defining a
callable that returns an applicable PTransform
one simply defines the
expansion to be performed as a callable. This is analogous to BeamPython’s
ptransform.ptransform_fn
decorator.
In this case one can simply write
- type: PyTransform
config:
constructor: __callable__
kwargs:
source: |
def my_ptransform(pcoll, inc):
return pcoll | beam.Map(lambda x: beam.Row(a=x.col2 + inc))
inc: 10
External transforms
One can also invoke PTransforms define elsewhere via a python
provider,
for example
pipeline:
transforms:
- ...
- type: MyTransform
config:
kwarg: whatever
providers:
- ...
- type: python
input: ...
config:
packages:
- 'some_pypi_package>=version'
transforms:
MyTransform: 'pkg.module.MyTransform'
These can be defined inline as well, with or without dependencies, e.g.
pipeline:
transforms:
- ...
- type: ToCase
input: ...
config:
upper: True
providers:
- type: python
config: {}
transforms:
'ToCase': |
@beam.ptransform_fn
def ToCase(pcoll, upper):
if upper:
return pcoll | beam.Map(lambda x: str(x).upper())
else:
return pcoll | beam.Map(lambda x: str(x).lower())